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WAVE-PLAN ANALYSIS OF UNSTEADY FLOW

by Don J. Wood, Robert G. Dorsch,
and Charlene Lightner

Lewis Research Center

Cleveland, Ohio } r\oq ‘0

ABSTRACT: A digital distributed parameter model for computing unsteady
flow in liquid-filled fluid systems is presented. The wave-plan method em-
ployed in the model involves essentially the synthesis of incremental pressure
pulses. The analysis is presented in a form general enough to be applied to a
variety of hydraulic systems. To illustrate the application of the method to a
 specific system, the response of a long, straight liquid-filled line to sinus-
oidal inlet flow and pressure perturbations is computed. Both a constant-
cross-section line and a tapered line are analyzed in the example.
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WAVE-PLAN ANALYSIS OF UNSTEADY FLOW

by Don J. Wood!, A.M., A.S.C.E., Robert G. Dorsch?Z,
and Charlene Lightner3

SYNOPSIS

An analytical method for computing unsteady flow conditions in liquid-
filled flow systems is developed. The method which is called the wave plan in-
- corporates distributed parameter and nonlinear effects including the effects of
‘viscous resistance. The wave plan is essentially a solution synthesized from
the effects of incremental step pressure pulses. The pressure pulses are gen=

erated because of incremental flow-rate changes that originate in a hydraulic
- system from a variety of sources, including the mechanical motion of the sys=
' tem structure. The pressure pulses propagate throughout the system at sonic
velocity and are partially transmitted and reflected at each discontinuity. The

velocity change caused by each pressure pulse is obtained from the Joukowski .
 relation. Pressure and velocity time histories at any point in the system are
obtained by a timewise summation of the contributions of the incremental pres-
sure pulses passing that point.

The analysis is presented in a form general enough to be applied to a
variety of hydraulic systems. To illustrate the application of the method to a
specific system, the response of a straight hydraulic line to a sinusoidal
orifice-area variation of an upstream valve is computed. Both a constant-
cross=section line and a tapered line are analyzed in the examples, and various
nonlinear effects evaluated. Comparisons are carried out with experimental
data obtained for the constant-diameter 1line and good agreement is shown to
exist.

INTRODUCTION

Hydraulic systems employed in present day applications often require
high performance with a small permissible range of variation from design
flows and pressures. In addition, many hydraulic systems are structurally
complicated. It is essential to be able to predict the dynamic response of these
systems under transient and forced periodic conditions.

lAsst. Prof. of Civil Engrg., Duke University, Durham, North
Carolina. ‘

2Head, Dynamics Section, NASA, Lewis Research Center, Cleveland,
. Ohio.

3Mathematician, Instrument and Computing Division, NASA, Lewis Re-
search Center, Cleveland, Ohio.




The basic partial differential equations for unsteady flow are derived
from continuity and momentum relations. Closed-form distributed parameter
solutions for small sinusoidal flow perturbations in long lines having negligible
fluid damping are available and are in good agreement with experimental
'data®=6, In ganeral, however, the nonlinear partial differential equations cane

_not be solved without resorting to tedious numerical or graphic techniques.

An analytical study was therefore undertaken at the NASA Lewis Re-~
search Center to develop a numerical distributed-parameter solution for un-
steady flow in hydraulic systems that would be in a form readily lending itself

- to digital-computer computation. The analysis techniques which were devel~
oped will be referred to herein as the wave=plan, The wave-plan method has
some similarities to a method of characteristics solution due to the technique
of tracing sonic disturbances throughout the systern; however, the wave-plan

"~ method is more easily applied to complex unsteady flow systems in addition to
lending itself better to physical interpretation.

» This paper presents the details of the wave-plan analysis along with the
basic elements of the corresponding digital-computer program required to cal-

culate unsteady flow in liquid systems. The analysis is presented in a form

- general enough to be applied to a variety of fluid systems. Examples are gwen

to illustrate the apphcatmn of the method to specific hydraulic systems. :

ANALYSIS
General
Basic equations. - The pressure and velocity of the liquid within a line as a function

of position and time can be obtained from the equations of momentum and continuity.
The momentum equation for a one-dimensional elastic fluid of constant mean density

is?

§§=-1[ﬂ+v§!+ /(v)] | (1)
ox glot ox .

where [f(v) is the resistance due to fluid viscosity, which is some function of velocity.
(Symbols are defined in appendix D.)
“The ¢ continuity equation for an elastic liquid in an elastic line is

[

k]

e i, o _c?av (2)
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Equations (1) and (2) are nonlinear partial differential equations which, ‘

" when solved along with the boundary conditions in a liquid-filled line, give re-.
. lations for velocity and pressure in the line,

Method of solution. - The direct solution of the continuity and momentum

. mquations 10 abIAIN velocities and pressures {s difficult even when the boundary

conditions are relatively simple (open or closed ends). In addition, exact solu=

~ tions have been found only for a system where the resistance term is lmeanzed :
" or neglected entn'ely4 :

Acceptable solutmna of nonidealized unsteady flow problems including

" nonlinear effects require the use of numerical methods and a digital computer.}

" The continuity and momentum equations have been solved by a numerical tech-
- nique based on the method of characteristics and adapted for digital computer

use’. Identical solutions may be obtained more readily by an alternate proc- '

- ess. This method, referred to as the wave-plan solution, is developed in thu
' paper.

A wave-plan solution is obtained as follows: At the point or points in a
liquid system where a disturbance is introduced (such as an oscillating valve

- or a moving impedance change), an incremental change in liquid flow rate due

to the disturbance over a very short interval of time is computed. The incre-
mental pressure pulse accompanying the flowerate change is then computed.

This pressure pulse is propagated throughout the system at sonic speed. The
pressure pulse is partially reflected and partially transmitted at all geometri-

.cal and physical discontinuities in the fluid network. Pressure and velocity

time histories are computed for any point in the system by summing with time

. the contributions of incremental waves.

Characteristic impedance. - The relation (characteristic impedance) be=-
tween pressure and velocity changes caused by a pulse traveling in the liquid-

~ filled line is computed from momentum considerations. Figure 1 shows pres-

sure and flow conditions, as a pressure wave propagates in a liquid-filled line,
that exist at time t and at time t + At. The wave takes the time At to travel

the distance Ax from A to B. During this time there is a pressure P + AP

~on the left end and a pressure P on the right end of the liquid contained be-

tween points A and B. This unbalanced Pressure causes the fluid to accelerate.

- Newton's second law gives

AP
VAV — v Time (P + AP - P)A = pA Ax —AA—:;,-
P+ AP P t .
.
i p |

V+AV v

P+ AP p 1*M
Point A [

:'. Flgunl. E!ladofpmsunpulscmmmllmmﬂbns.



Canceling and rearranging yield

AP=pAV-é—x-
At

The term Ax/At is the propagation speed of the pressure wave, The wave speed is

- equal to the sonic velocity C in the system if the mean velocity of the liquid in the line
is neglected. BSince the mean velocity of the liquid is usually much smaller than the
acoustic velocity, this is usually permissible. Thus,

AP =pC AV ; (3a)
or in terms of head of liquid
AH=C AV - (3v)
g

The sonic speed C for a liquid flowing within a line is influenced by the elasticity of the
line wall, and for a system that is axially unrestrained’~? can be calculated

/T

Equation (3), which is thec well known Joukowski equation, states that the pressure
change at any point in a line is equal to the product of the velocity change at the point
times the characteristic acoustic impedance pC of the liquid in the line. This relation
may also be derived by employing continuity and energy prm_c1p1e58 ' 9,

Generation of Pressure Waves

Pressure waves may originate in liquia flow systems in a variety of ways. Two
common sources are an orifice or valve with a varying open area and a moving point in a
line where there is an impedance change. In order to apply the wave-plan method to
varying area change or moving impedance change, the corresponding disturbance func-
tion is approximated by a series of discrete changes over small equal time intervals.
Figure 2 shows this approximation.

Each of these changes is assumed to occur instantaneously at some time during the
time interval. The pressure perturbations associated with each of these changes

4



are then computed as shown in the following examples. )
Varying area orifice. - A pressure wave is gen-

erated at an orifice that experiences a change in open-

ing area. The magnitude of the generated wave is a

function of conditions before the area change and the

magnitude of the ares change,

_g The flow through an orifice is assumed to obey the

Time, t square-law relation:
figure 2. - § mation of disturbi
fgur tep approxi ng VeB \/-A?

Wlisturbing function

function,

The orifice coefficient B is a function of the open area, the line area, and the dis-
charge coefficient and is easily determined for a particular orifice. For the case of an

open area that is a small percentage of the line area (Ao << A), the orifice coefficient is
given closely by

B=,CD%Q Ve

where the discharge coefficient Cp, is a function of Reynolds Number (and hence, veloc~
ity). For small velocity perturbations, however, the discharge coefficient varies only
slightly, and hence the orifice coefficient may be considered to vary linearly with area
changes. The examples in this report deal with this case. _

Figure 3 shows conditions at an orifice before and after a small orifice-area change.
The flow is from left to right. The external pressure head may be varied in a pre-
scribed manner. '

The momentum equation across the wave front gives

=C -
Ay =2 V- Vyy)

The flow out the orifice after the orifice area change is given by

Tie Vi1=By YH; + AH; - Hy,
Vi Hy luz t '
s 4
! Solving the momentum and orifice equations simulta-
" e neously gives the following quadratic in V;,
-
Vi Hy Yt M2 At
-l '2 vgl + bV11 + C= 0 (5)
Figure 3. - Effect of step change In orifice coeffi- ‘
clent at terminal orifice, where



2
B,C
bz.—.—z—

cv
2 1

The positive root of this equation gives the desired value for outflow velocity. Substi- .
tuting this value for Vi1 back into the momentum equation gives the magnitude of the
pressure wave generated by a sudden change in orifice coefficient from B, to B,.

Moving terminal orifice. - The analysis of the magnitude of a pressure wave gen-
erated by the motion of a component in a fluid line is exemplified by considering the
motion of a terminal orifice. The lateral velocity of the orifice is so represented by a
series of step changes that the velocity of the orifice remains constant over short time
intervals. Figure 4 shows conditions at a terminal orifice just before and a short time
after a step change in velocity. The orifice coefficient need not be constant.

The momentum equation across the generated wave is

C
Ay =2 (Vy -V

-

The displacement shown in figure 4 takes place in the time increment At. The con-
tinuity equation states that the net inflow across boundary AA equals the net flow out the
orifice plus the storage that takes place during the time interval. Therefore

VqA At = VE4A At + VOA At

or
+ Time where VE, is the lateral velocity of the ori-
vy, Wy Hy Vil { fice end during the time interval, and VO is
IB: the liquid velocity in the line (with respect to
- VB the orifice).
it VE, The flow out the orifice is given by
Vi 1y Vi l"zz ten
A .
Figure 4. - Effect of latersl motion of terminal orlifice. Solving the preceding equations simultaneously

6



for the resulting line velocity gives the following quadratic in VO:

vo?+VOsc=0 (6)
where
Bio
Pw o
g
and

g2l L€
= '32[1*1 + V- VEy - sz]

Effect of Viscous Resistance

After the generation of a pressure wave at a perturbing point in a liquid system, the
wave propagates with sonic velocity throughout the system, The viscous resistance of
the liquid medium influences the propagation of this wave.

The effect of viscous resistance on pressure pulse propagation can be neglected

without appreciable effect for short, large-diameter lines where such losses are small;

however, for longer lines or small-diameter lines carrying viscous liquid, the resistive
losses are not negligible and should be included in an unsteady flow analysis.

The exact solution of the partial differential equations (1) and (2) is limited by the
necessity of linearizing or neglecting the friction term entirely. For graphical analyses
it has been necessary to consider the friction losses as lumped at one or more points in
the pipeline if a manageable solution is to be obtzmined1 0.

To include the effects of viscous resistance in a wave-plan solution, the extent that
fluid viscosity influences the propagation of a pressure pulse must be determined.

There is presently no experimental or analytical information available which is in a
form that can be used for the prediction of the effect of viscous resistance in unsteady
line flow. Because of this limitation it is necessary to make a quasi-steady approxima-
tion and to assume that viscous losses in a small line length dx are given at any instant
by the Darcy equation as

f Ax V2

2gD

(M

Ahy =

The form of equation (7) is identical to that of an internal square-law orifice if the
orifice coefficient is given by




f ax

This equation implies that viscous losses over a small length of line can be lumped
at an internal square-jaw orifice with a properly chosen orifice coefficient, This repre-
sentation is referred to as the "Morifice analogy," and its use in graphical analysis has
been suggested by Bergeronm.

Line losses can be distributed at many discrete points along a line by inserting a
large number of correctly chosen square-law (friction) orifices. Impinging waves are
then reflected and transmitted at these friction orifices in 2 manner similar to that of
reflection and transmission through a small region of flowing viscous liquid.. The equa-
tions governing wave reflection and transmission at a friction orifice are developed in
the next section.

Reflection and Transmission of Pressure Waves at System Discontinuities

It is necessary at each discontinuity to compute the magnitude of transmission and
reflection of each pressure pulse in terms of initial conditions at a discontinuity, the
nature of the discontinuity, and the magnitude of the impinging waves. These deriva-
tions are all made by employing the three fundamental fluid flow relations (continuity,
momentum, and energy). . ~

Figure 5 shows two waves impinging and reflecting simultaneously at a discontinuity
in a liquid system. The notation used in this figure is employed in subsequent specific
examples. Liquid moving from left to right has a positive magnitude of velocity.

The momentum equations across the wave fronts yield

' C
ro=- AH . _ 1
! /‘\ "AHZ Time AHI = —g—- (V' - Vl) (8)
v Vl. Hl ( ) VZ' Hz v t
] _ 1 -
- AHyy =— (V' - Vyy) (9)
By :
N r=AHg, c
B ( | Yotz (v aHy = —2(vy - V™) (10)
— 27
- C
Fig‘t::trkc;"s.‘t dm't‘:\:li‘tj;e for conditions before and after wave AH22 = _g_z_ (sz -V ') ( 1 1)

(See fig. 5 for definition of V' and V*.) Equations (8) and (9) combine to give
Cy

8



and equations (10) and (11) give
Cz : ’ :

(4

The new pressures are given by

Terminal orifice. - A terminal orifice i8 considered to be bounded by a pressure

- reservoir., The pressure in the reservoir may be changing in a prescribed manner. In
addition, the orifice coefficient may also be changing in a prescribed manner. Figure 6
shows conditions before and after reflection from an orifice bounded at the inlet by a
pressure resgervoir.

If the discharge after wave action is in the posi-
tive direction (from the reservoir to the line), the

Nk head-discharge relation for the orifice is given by
, Time
"1l Ha V2 v t
. - Vag= By YHyy - (Hy + AHy + AHp)
re=aiz
My MV - ¢ ‘Solving this equation simultaneously with the
,'2 momentum equations (13) for the velocity gives the
e following quadratic in Vg4t
Figure 6. -~ Pressure-puise reflection at tarminal
orifice, : 9 .
sz + bV22 +c=0 (16)
‘where
2
BoC
b= _1_2.
g
and

CoV
2 272

Because the resulting direction of flow was taken as positive, the positive root of

9




equation (16) is the desired result. .
The magnitude of the reflected pressure wave is obtained from equation (13). The
new pressure at the orifice is given by equation (15).
If the direction of flow is into the reservoir after wave action (negative direction),
the velocity head relation is given by

Vg = By Y(Hy + AHy + AH,g) - Hy,

. Simultaneous solution with the momentum equations gives a quadratic in Vgt
o, _ .

V22+bV22+ c=0 (17)
where
B3C,
b= et
g
' C,V
2 272

The negative root of equation (17) is the desired resuit.

It is necessary to determine the resulting direction of flow so that the correct equa-
tion (eq. (16) or (17)) can be applied. Inspection of equation (16) discloses that the term
Hyq - Hy - 2 AHy + C,V,/g must be positive to yield the necessary positive root. If
this term is negative, the flow must be into the reservoir, equation (17) must be used,
and the negative root must be computed.

Friction orifice. - Figure 7 shows conditions before and after pulse-wave action at
a friction orifice. Because of identical conduits on both sides of the orifice, the head-
velocity relation for the orifice after wave action for flow from left to right is

- . AH
M ] 2 mm Notingthat C,=C,y=C and solving this equation
v Vi By | Ha V2 vt simultaneously with the momentum equations (12)
o - and (13) give
B -
= a V2 +bV,.+c=0 (18)
v VieHy : Ha V2 | v t* 11 117"
- Lo

where
Figure 7. - Pressure-pulse refiection at internai orifice.
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: 8

The positive root of this quadratic equation gives the resulting velocity through the
friction orifice. The term H; + 2 AH; - Hy - 2 AH, + ZCVI/ g must be positive to yleld
a positive root. If this term is negative, the resulting flow is from right to left, and the
head-velocity relation for the orifice is

Vi1= Vaa = By YHy + Aly + 8Hy, - H - AH, - AH,;

This equation combines with the momentum equations to give the following: .

Vfl + an +c=0 ' (19)

where the coefficients b and ¢ are of the same magnitude and of opposite sign from
the corresponding coefficients in equation (18).

The negative root of this equation gives the resulting velocity in the negative direc-
tion. The magnitudes of the resulting pressure waves and the pressures after wave
action are given by equations (12) to (15).

Diameter discontinuity. - The relation between net head and discharge for a diam-
eter change in a conduit is derived by utilizing energy relations. Figure 8 shows the
notation for this derivation.

I A D> Az,' the diameter discontinuity is an abrupt constriction, and the energy
equation for flow through the constriction from left to right after wave action is

‘ 12 ime v2 v2 A 2 y2

o ~ 2g 2g A1 2g

P
The area ratio is denoted as
=&y -
Cl v V", Hn Vn, Ha A CZ t* R=— (20)
Ay

o

Figure 8. - Pressure-pulse reflection at diameter discontinuly.  Then the continuity equation is

11




Vag=RVyy (21)

f these relations are substituted into the energy equation' and the terms are com-
bined, the following net head-velocity relation is obtained:

PR .1 ‘
Hyy-Hyy= Vix(""‘i'{“-) | | (22

If A1 < Az, the diameter discontinuity is an abrupt expansion, The energy equation
~ for flow through the expansion from left to right after wave action is :

2 v2 22
MTURS T o BN -
2 PR tHp (ool o=

2¢ Ay 2g

‘This equation gives the following velocity-head relation for an expansion:

Hyy - Hyp= V§1(.B_2_'_§) R (23)
g .

The case of a lossless diameter discontinuity is also important because step diam-
eter changes can be employed to simulate a tapered line. In the continuously tapered
line the losses are small and sometimes can be neglected. The energy equation without
the loss term is

2 2
v \'4
Y, g -12,q,
2g 2g

The resulting velocity-head relation is

2 .
2 R2.1
Hyq - Hyp= Vu( ) (29)

2g
The final net head after wave action can be written as
or .

12
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_ The relation is combined with the continuity equation and the velocity-head relation
to obtain second-order polynomials for the line velocity after wave action, The equation

Cy CgaR

A | o - A S

g v g€ B

CiVi, CaVy
g g

The coefficient a depends on the type of discontinuity and whether energy losses
are included. For a contraction with losses included the coefficient is

_3R%2-2m-1 | | @

ig

a

For an expansion with losses included the coefficient is |

a=R -R (28)

-1 (29)
2g ‘ A

For each case the resulting velocity is the positive root of equation (26). There-
fore, the term
CiV1,CaV2
g g

13
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must be positive. If this term is negative, the resulting flow is from right to left, and ~
the equations are reformulated by putting the loss term on the correct side of the energy

~ equation,

Junctions of three or more legs. - The previously presented mathematical analyses
pertaining to the reflection of a pressure pulse at a diameter discontinuity have taken
into account energy losses introduced by the digcontinuity, With junctions of three or
more legs, the inclusion of energy loss terms becomes increasingly difficult because of
the irreversibility of frictional effects. Thus, the treatment employed herein will be
similar to the one presented in standard references on ﬂuid dynamics and will not be

) denvedl 1

The relations for computing the percentages of magnitude of & pressure wave trans-
mitted and reflected at a junction are based on the following:

(1) The Joukowski equation applied across each wave

(2) Continuity of flow at the junction

(3) Continuity of pressure at the junction

The magnitude of the wave that is transmitted to all the other legs of a junction of
n legs due to a wave of magnitude AH impinging in line 1 isg;lvenby T(1)AH, where
the transmission coefficient T{(i) is given by

2A()
() = —CB (30)

N ‘ ’ n

A
cQH

=1

The magnitude of the wave reflected in leg i is given by R(i)AH when the reflec~ -
tion coefficient R(i) is given by

R(1) =T() - 1

Analysis of the Dynamics of a Liquid System by Wave Plan

The wave-plan analysis supposes a system composed of a discrete number of dis-
continuities connected by lossless line segments, which serve only to transmit pressure
pulses. The discontinuities include geometric ones, such as terminal orifices and diam-
eter discontinuities, and artificial ones, such as friction orifices. A typical simulated
fluid system is shown in figure 9.

14
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L
Lot A ‘I v Right
Fomt h ¢ )

Figure 9, - Wave-plan representation ot typicil fiuld system,

There is & variable~-area oritias at A (valve) and a fined oritice at B, At C there is
an abrupt change in line diameter. Friction orifices are inserted between A and C and
between C and B to simulate viscous resistance.

The equations developed thus far have applied only to conditions at a particular polnt
in a system at a particular instant of time. Through the use of these equations it is
possible to compute velocity, pressures, and magnitudes of pressure pulses leaving a
particular discontinuity in terms of the magnitudes of impinging waves and conditions
grior to wave action.

To analyze a system, however, the equations must be both time and position de-
pendent. This dependency is indicated by the form of the basic partial differential equa-
tions (egs. (1) and (2)). It is apparent that the pressure wave impinging at one discon-
tinuity in a liquid system is exactly that wave which left an adjacent discontinuity at some
time in the past (because of the lossless line connector simulation). Thus, the waves
are related by position and time. In general, variables have the form f(x,t). Specifi-
cally, H(x,t), V(x,t), and AH(x,t) denote the pressure head, velocity, and pressure
Ppulse as a function of position and time, with x and t being the position and time sub-
scripts, respectively.

The wave-plan analysis provides for information at specified points in the system
{discontinuities) and at discrete time intervals. New information is available only at
discrete time intervals because all of the disturbing functions are approximated by a
series of small step changes occurring at specified times, The system response to
- these disturbing functions will also be in the form of step changes. Because of the two-
parameter dependence of the dependent variables, it is advantageous to denote position
and time subscripts.

Position subscripts. - In order to apply the analysis equations that have been devel-
oped for a discrete point to a liquid system, it is necessary to introduce a method of
denoting position. This is done by numbering adjacent discontinuities in a consecutive
manner as indicated in figure 9. (This arrangement is modified at junctions of three or
more legs). The position subscript is denoted as L.

In addition, because pressure and velocity states may differ across discontinuities,
it is necessary to denote a left and a right side of a discontinuity. This is done by adding
an L for left and an R for right to the nonsubscripted part of the variable.

Thus HI(L,t) denotes the pressure head to the left of discontinuity L at time t.

15




Time subscripts. - The time subscript J is defined as follows:
t=J At

where t is the time and At is the working time increment. Thus HR(L, J) denotes the
pressure head to the right of discontinuity L attime t = J AL,

Selection of working time inerement. - The working time increment At is the time
interval between successive computations. -

Its selection is determined by two factors. First, the time increment must be
small enough to approximate accurately all disturbing functions by a series of step
changes. Second, it is necessary that all reflections of pressure pulses in the system
take place at an integer number of time intervals. The wave travel times between all
adjacent discontinuities will then be an integer number of working time increments. If
this were not the case, waves would be impinging on a discontinuity in a completely
arbitrary fashion and would make the solution unmanageable.

The selection of the time increment is simplified because the majority of discon-
tinuities in a system will be friction orifices, and these can be placed where desired.
For example, the selection of the working time interval for the system shown in figure 9
is made as follows: ’

(1) The wave travel times between adjacent geometric discontinuities are determined:

(a) tac - wave travel time between A and C

(b) tcb - wave travel time between C and B
Within the desired limits, the largest time interval of which these travel times are
integer multiples is determined. This time interval represents the largest working time
increment possible.

(2) It is then determined if the integer number of working time increments necessary
for travel between A and C and between C and B is large enough to insert the desired
number of friction orifices that must, of course, be separated in time by at least one
working time increment. If not, the increment can be divided by any integer to obtain a
smaller working time increment. _

(3) It must be determined if the working time interval necessary to assure an integer

' number of time intervals between all discontinuities is small enough to approximate

accurately the disturbing function (variable-area orifice at A) by a series of step changes.
If not, the working time increment is further divided by an integer necessary to get a
suitable approximation. The integer number of time increments between discontinuities
is increased by this factor.

Subscripted notation for analysis equations. - The analysis equations are easily ex-
tended for application to a liquid system by the use of the subscripted notation. Fig-
ure 10 shows conditions at a discontinuity before and after wave action when the sub-

scripted notation is employed.

16




re-AHRGL - 1, J - KX) AHLAL + 1, J-KY)
- /\_ = A ' N
v He,J-n ( : ) e, J-1n -
e, Jj-n VRL, J-D
Lott L Right
it e R /\ : - AR, )
] M, 3 HRW, )
v VL, 3 ( ) win |V
N [ o

Figure 10. - Subscripted nomenciature jor conditions before and alter wave action at
discontinuity,

The time that the waves reach discontinuity L is t = J At. Conditions before and
'after that time are constant, and step changes occur at t = J At.

A comparison of the nonsubscripted notation in figure 5 to the subscripted notation
in figure 10 gives the identities necessary to make the analysis equations general expres-
sions for a liquid system. These identities are as follows:

VI(L,J-1)= V = velocity to left of discontinuity L

| HI{L,J - 1) = H, = pressure head to left of discontinuity L

VR(L,J - 1) = V4 = velocity to right of discontinuity L

HR(L,J - 1) = Hy = pressure head to right of discontinuity L

AHR(L - 1,J - KX) = AH, = pressure pulse coming from adjacent discontinuity to
left. KX is the number of working time intervals it takes a sonic disturbance
to travel between the two discontinuities.

AHL(L + 1,J - KY) = AH, = pressure pulse coming from adjacent discontinuity to
right. KY is the number of working time intervals it takes a sonic disturbance
to travel between these two discontinuities.

The conditions after wave action are as follows:

VI{L,J) = V41 = velocity to left of discontinuity L |

HI{L,J) = H,, = pressure head to left of discontinuity L

VR(L, J) = V99 = velocity to right of discontinuity L

HR(L, J) = Hqgq = pressure head to right of discontinuity L

AHL(L, J) = AH11 pressure pulse leaving discontinuity 1. and moving to left

AHR(L, J) = AH,, = pressure pulse leaving discontinuity L and moving to right

Substitution of these identities into the analysis equations (egs. (8) to (29)) yields a
perfectly general set of algebraic equations applicable to any liquid system.

Method of computation. - The solution is carried out by using the subscripted equa-
tions as follows:

(1) A working time increment is selected.

(2) Initial conditions are computed from given steady-state values that exist in the
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system prior to the initiation of a disturbance. These conditions include velocity and
pressure to the left and right of each discontinuity and are denoted at t=0 by VL(L,O),
VR(L,O), HL(L,0), and HR(L,O).

(3) Computations are then carried out to determine conditions at each discontinuity
at the end of the first working time interval by using the conditions from step (2) as ini-
tial conditions, It should be noted that the analysis equations will predict no change at an
undisturbed discontinuity that is not subjected to impinging waves. Thus, conditions will
only change at the end of the first time interval at a disturbance source (point A, fig. 9):
At the disturbance source conditions change, and waves are generated that will subse-
quently alter conditions at adjacent discontinuities.

(4) Each discontinuity is analyzed at the end of each interval. The computations are
carried out as long as desired to give pressures and velocities at each discontinuity at
the end of each working time interval. '

Digital Computer Programing

The wave-plan analysis consists of the sequential solution of many equations. The
dynamic analysis of even a rather simple liquid system for a reasonable number of time
intervals involves a large number of computations. A digital computer must be employed
if the solution is to be obtained in a reasonable length of time, o

To make the digital analysis as general as possible, computer segment programs
(subroutines) have been written for the most common types of discontinuities. These
discontinuity solutions can then be combined (incorporating junction equations, if neces-
sary) to obtain digital computer models for various liquid flow systems.

Each discontinuity subroutine computes conditions at the discontinuity for some
point in time as a function of the local velocity and pressure-head conditions a time in-
terval earlier, the magnitude of impinging waves (from adjacent discontinuities), and the
step changes in disturbing functions during the time interval.

The following subroutines have been written to be used in the digital model repre-
sentation:

(1) Terminal orifice subroutine

(2) Internal (friction) orifice subroutine

(3) Diameter discontinuity subroutine

Each subroutine uses the general relations given by equations (12) to (15). Also
each subroutine initially assigns nonsubscripted identities to their subscripted counter-
parts and finally assigns the nonsubscripted results to the subscripted terms (as indi-
cated in the section entitled Subscripted notation for analysis equations). A description

and computer printouts of the digital computer subroutines are included in appendix A.
All digital computer programming has been done in Fortran IV.
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The subroutines are combined to form digital computer models for the dynamic
analysis of liquid flow systems. Two examples are included in the next section.

RESULTS AND DISCUSSION

The equations and programs developed in the ANALYSIS section form a basis for the
analysis of unsteady flow conditions in a liquid flow network. The equations and pro-

» grams have been kept general so that they may be applied to the analysis of a variety of -

liquid systems. In general, the wave-plan digital-computer analysis has distinct advan-
tages over other methods such as analog-computer models that substantially linearize or
lump parameters and small perturbation techniques that linearize around mean-line con-
Qltions. The following features of the wave-plan analysis should be noted:
% (1) Viscous friction effects are easily included.

(2) Perturbing functions of any form may be used.

(3) Nonlinear relations are easily included. (Linearization of parameters is of little
or no advantage. )

(4) Both transient and steady-state responses to disturbing functions are given.

(5) Complex networks can be analyzed.

Two examples will be used to illustrate the application of the wave-plan method to
the construction of digital models of particular liquid flow systems. The first example
will illustrate the method of computing the transient and steady-state response of a long,
straight hydraulic line to a periodic sinusoidal flow disturbance. In the second example

the response of a long tapered line will be computed.

Example 1: Long Hydraulic Line With Oscillating Inlet Orifice

This example was chosen because the computer results can be compared
directly with experimental data from the Lewis Research Center line dynamics
rig4' . Schematics of the liquid flow system are given in figure 11. Fig-
ures 11(a) and (b) show the analytical model and the experimental rig, respec=-
tively. The system consists of a 68-foot-long, 7/8-inch-inside-diameter line
with pressure reservoirs at both ends. The test fluid was JP-4 fuel or another
hydrocarbon, depending on the liquid viscosity desired. Line pressures
ranged from 200 to 400 pounds per square inch. A variable-area throttle valve

‘that perturbs the system is located at the upstream end of the line (point A),

and a fixed orifice is located at the downstream end (point B). The details of
constructing the digital model are given in appendix B along with the program
constants used in the calculations.
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Effect of amplitude of input perturbations. - Most line-dynamics analyses are based
on small-perturbation techniques that permit the use of linearized terminal impedances
as an approximation for nonlinear pressure-flow relations at the end of the line. There-
fore, in taking experimental line-dynamics data’ =6 the practice is to limit the
amplitude of the oscillating throttle disturbance generator. The minimum usable ampli-
tude, however, for a given line condition and terminal impedance is limited in practice
by the ratio of the sine wave signal to the nonharmonic noise which decreases with de-
creasing amplitude. The permissible maximum amplitude is limited in practice by the
appearance of harmonics in the sinusoidal pressure signal as the amplitude is increased,
The system must be operated between these two limits.

The relation between the disturbance amplitude and the degree of nonlinearity of the
pressure and velocity perturbations was determined analytically by varying the amplitude
of the sinusoidal input perturbations for the analytical line model. The mean orifice
coefficients were 0. 8 at the inlet and 1. 0 at the outlet. The steady line velocity was
14 feet per second. For the digital computer program (appendix B) the amplitude of the
input orifice coefficient perturbation BA was varied at 40 cps as shown in table I.
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The calculated steady-state responses for the
pressure and fluid velocity at the inlet and outlet of
the line (points A and B, fig. 11(a)) are shown in
Case | Input orifice | Percent of steady-|  ligure 12 (p. 22). The velocities and pressures are

TABLE 1. - AMPLITUDES OF ORIFICE

COEFFICIENT PERTURBATIONS

coefficient state orifice dimensionless, having been divided by steady line
perturbation | coefficlent values. Figure 13 shows that, as the amplitude of
mp:;udo. the disturbing function is decreased, the system
1 0.48 o0 responses are more nearly described by a
2 .82 40 sinusoidal-type periodic function; however, for the
3 .20 25 particular line condition and terminal impedance
4 .15 18.75 ‘used in the example, nonlinearities are evident

i even for relatively small perturbations. For ex-
ample, the inlet velocity perturbation is very clearly nonsinusoidal for an 18, 75-percent
disturbing amplitude even though the perturbation amplitude 'is only 2 percent in the posi-
tive direction and 4 percent in the negative direction.

Transient response. - Dynamic systems analyses are usually based on steady-state
‘responses to steady sinusoidal inputs. This analysis technique does not, however, pre-
dict the transient response to the initiation of a disturbance or a change in the disturb-
ance characteristics in a liquid flow system. The wave~plan solution gives both trans-
ient and steady-state solutions. This point is clarified by examining both the transient
and final steady-state responses to the initiation of a sinusoidal disturbing function in a
liquid system under steady mean-flow conditions. A value for BA of 0. 15 (case 4, table I)
was chosen for the amplitude of the disturbance function. The line response starting with
the initiation of the disturbing function is given in figure 13 (pp. 23 and 24). For the case
studied several cycles were required for the perturbation velocities and pressures to ap-
proach the steady-state values. In some cases the amplitudes of the transient responses
‘are considerably different from the steady responses. For example, during the early
part of the transient period the magnitude of the inlet velocity perturbation was nearly
double the steady-state value.

Comparison of analytical and experimental results. - The experimental hydraulic
line (fig. 11(b)) was operated with the upstream throttle valve sinusoidally perturbed at
70 cps with area perturbation amplitudes of 12.3, 33.8, 55.3, and 76. 8 percent of the
open area. The mean value of the coefficient for the upstream orifice was 0.65, and the
corresponding value for the downstream orifice was 0.42. The downstream orifice was
slightly open with respect to characteristic. Figure 14 (p. 25) shows the resulting ex-
perimental pressure-time oscilloscope traces for the quarter-length point of the line
(measured from the upstream throttle valve).

The experimental conditions were duplicated by the digital model, and figure 15
(p. 25) shows the theoretical results for these four different input amplitudes. The
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Figure 12. - Effect of amplitude of inlet orifice area perturbation on steady-state response of long line.

agreement between the wave shapes determined analytically and experime?éally is very
- good for all cases. In addition the analytical and experimental magnitud¢s agree to
~ within the accuracy of the measurements (approx. 3 percent).
This example illustrates that the wave-plan analysis for unsteady liquid flow is
capable of accurately including nonlinear effects and giving results in good agreement
with experimentally observed values. , '
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Example 2: Response of Long Tapered Line to Sinusoidal Input Disturbance

The analysis of the response of a liquid system composed of lines of nonuniform
diameter (tapered) to a periodic disturbing function is difficult if classical methods are
employed; however, tapered lines can easily be included in a wave-plan amalysis by
approximating the tapered line by a line composed of a discrete number of diameter
changes (fig. 16, p. 26). ‘

In order to evaluate the quantitative effect of tapered lines, the system shown in
figure 17 (p. 26) was studied in detail. This system consists of two pressure reservoirs
connected by a tapered line. At the end of the tapered lines, relatively large resistive
losses were introduced in the form of square-law orifices. The throttle valve at point A
has a sinusoidally varying area, and the orifice at point B is fixed.
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This system was studied for varioué
: , degrees of taper. The configurations

:;-—:,'_F-_f
- were chosen to give the diameter at the
T , inlet as
Figure 16, summwmnwm -
E DAsD-§ (81a)
and the diameter at the outlet as
[RENGUSE. - =
S - S -
HEN e DB=D+6 - ft (31b)
~ 1 4 . 1 . D
{1 2 3 L CON _ The diameter of the tapered conduit
Point A ) is assumed to vary linearly between the
Figure 17. - Reservoir condut system with tapered {ine, ends and the average diameter is always

D feet.

If the resistances of the terminal orifices are large compared to the line loss, the
steady discharge of the system is practlcally independent of 6 and would depend mainly
on the reservoir pressures and the mean line diameter. Even for lines with much
smaller end-resistive losses the system discharge would be only slightly dependent on
the degree of taper, because line losses consisting of friction and expansion or contrac-
tion losses would be mainly dependent on line length and average diameter. Mathemati-
cally this can be written as

Q2 . __HEN - HEX A (32)
Kent K, + Kex
where K, , K, and Kex are the loss coefficients of the entrance orifice, the line, and
the exit orifice, respectively.
When this system is used with large values of Ko and Kex as compared to K,
it is possible to compare directly the dynamic response of systems that are essentially
statically equivalent. Pressure and flow perturbations can be quantitively compared as
a function of degree of taper. The straight conduit (6 = 0) is a special case that is in-
cluded in the analyses.
 The tapered conduit was chosen so that the wave velocity would be constant; thus the

" ratio of diameter to wall thickness remained constant along the length of the line.

For the digital model the tapered line was approximated by N - 1 short straight
sections of conduit, as shown in figure 17. In this manner the diameter of each approxl-

mating section I is computed by the equation
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Figure 18. - Pressure and velocity perturbation responses in tapered line,
Inlet diameter, 0.6 foot; exit diameter, L. 4 feet; frequency, 17.5 cps.

D(I) = DA + (D—B—;—I?é) (—2-1—'—1) | (33)

N-1

The details of the digital model along with the computer flow diagram
and program constants are given in appendix C. One basic system was studied .
in detail, a system having a high-resistance orifice (three-fourths to seven-
eights closed geometrically but slightly open with respect to characteristic im=-
pedance) at the inlet with a 10-percent sinusoidal variation in the area of the
orifice opening. The outlet orifice was chosen of even higher resistance than
the inlet and represents an end that is closed with respect to characteristic
impedance. Nine degrees of taper were studied, the average diameter D
being 1 foot for each case. The values of 5 that were used were -0.3, -0.2,
-0.1, 0, 0.1, 0.2, 0.3, 0.4, and 0.5 foot.

The quarter-wave resonance frequency for the nontapered line is 15 cps. Frequen-
cies of 5, 7.5, 10, 12.5, 15, 17.5, 20, and 25 cps were studied for each case. In all
cases the pressure and flow perturbations were slightly nonlinear even though they were
small. In all cases they were within 2 percent of mean-line values. Figure 18 shows
typical pressure and flow perturbations for one cycle, ‘
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In spite of the nonlinearity of the perturbations, they were steady and repeatable
after several cycles (during which the transient died out) and resembled sinusoids. It
was considered appropriate to make comparisons based on positive amplitudes. This
procedure is followed in the ensuing discussion.

The analytical results are displayed graphically in figure 19, Figure 19(a) shows
the variation of the amplitude of the outlet pressure perturbation with frequency for the
expanding taper (line that expands from inlet to outlet). Figure 19(b) shows the pressure
perturbation gain (ratio of outlet pressure perturbation amplitude to inlet pressure per-
turbation amplitude) for the expanding taper. Figures 19(c) and (d) show the same re-
sults for contracting tapers. The most striking result apparent in figure 19 is the shift
in the resonant frequency for tapered lines. This shift is shown in figure 20,

Another result is that the maximum pressure perturbations at the outlet have a
strong dependence on & and vary considerably over the entire frequency range. Thus a
certain amount of control can be exerted over the response of this system by the judi-
cious choice of tapers. For example, in the case of an expanding taper of 6= 0.3 the
amplitude of the outlet pressure perturbation is significantly reduced when compared to

~ a straight-line response for the frequencies shown except in the range from 6 to 12 cps.

A line with a contracting taper of 6 = -0. 3 differs little from a nontapered line (6 = 0)
up to 15 cps. For frequencies greater than 15 cps the outlet pressure amplitude pertur-
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° bation is considerably greater.

8 This example indicates that the
. dynamic response of a liquid system
4 - can be altered significantly with a cer-
tain amount of control without signifi-
2 cantly altering the static response of

the system; however, the primary
intent of the example is to illustrate

Line taper facter, §

0 the use of the wave-plan analysis.
AN Although the example was applied to
=2 A < a system with a linear taper and a
~ sinusoidal disturbing function, a sys-
-4 : tem of any arbitrary taper with any
"3 wo s m.,.,.l,fg, s wso @0 & disturbing function could have been
Figure 20, - Varlation of resonant frequency with taper factor. analyzed with no additional difficulty.
CONCLUSIONS

The analytical method presented in this paper provides a means of ob-
taining distributed parameter solutions to a variety of unsteady flow problems
for liquids flowing in conduits. An advantage of the method is that the com=-
plete solution is obtained. For example, both the transient and the steady-
state response to a suddenly imposed periodic flow disturbance is obtained.
Furthermore, the disturbing function can be of arbitrary form and need not be
periodic. Nonlinear effects are easily included. In addition, the wave-plan
method is advantageous in making certain types of dynamic response calcula-
tions. For example, the response of liquid-filled lines having types of axial
cross=-sectional area distributions for which there would be littie hope of ob-
taining closed-form analytical solutions can be easily handled.

The wave-plan analysis can readily solve problems in which there is
interaction between the structural motion of the conduits and the perturbations
in the fluid flowing within the conduits. Interactions of this type often occur

in hydraulic systems; however, the motion is usually neglected in the analyses.
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APPENDIX A

~ COMPUTER SUBROUTINES

Digital-computer routines have been written ta solve for conditions at various line
discontinuities after wave action in terms of the conditions at the discontinuity prior to
wave action, the magnitudes of impinging waves, and the physical characteristics of the
discontinuity. These routines have been formulated in such a manner that they may be
easily incorporated into a computer program to synthesize different liquid flow systems.

In all cases the computer routines have been written in nonsubscripted notation,
which corresponds exactly to the notation presented in the text of this paper. In the
calling vector that calls the subroutine into the main program, the subscripted counter-
parts of the nonsubscripted subroutine variables are identified.

This mechanism of identifying subscripted variables in a calling vector
makes it possible to use the analyses presented in the text for specific orienta-
tions and flow conditions to solve for all orientations and flow conditions. In
this manner the analyses presented in the text of this paper have been general-
ized. Proper identification of the variables in the calling vector is tantamount
to orienting the discontinuity to correspond to the case analyzed in the text. A
table incorporated into each subroutine gives the proper subscripted-to-
nonsubscripted dependence for each case.

Each of the analyses presented in the text resulted in a polynomial that
is quadratic in a velocity term. For several reasons these equations were
solved by an iterative manner by employing Newtonian extrapolation. The roots
of the polynomials were determined by looping the following equations: '

avil + V1l + ¢
2avil+b

error =

Vil = V1l - error

The looping is continued until the error is of sufficiently small magnitude. An ac-
ceptable solution can be obtained within a very few cycles because the wave-plan solution
deals with small changes, and the value of the velocity before wave action is a good
approximation of the final value. In addition, the coefficients b and c are generally

“large and always much larger than a. These conditions lead to a rapidly diminishing

error term.
A direct solution of the quadratic squations by the quadratic formula results in a
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solution that is a small difference between two large numbers. In some cases sufficient
accuracy cannot be obtained even when double-precision computing teghniques are em-
ployed. The computer programs which use notation identical to that appearing
in the text of this paper didactically illustrate the logic of the subroutines and
are presented in lieu of flow diagrams. ' A brief description of the program and
the Fortran IV program for each computer routine follows.

Terminal Orifice Subroutine

Equations (16) and (17) are the basic equations employed in this analysis. They are
derived in the text for an orifice.on the left end of a line. The table at the beginning of
the subroutine gives the identities that must be substituted into the calling vector depend-’
ing on whether the orifice is on the right or left end of the line. Before the subroutine
is entered, the following terms must be identified with a numerical value:

B orifice coefficient

HEN reservoir head for leit end

HEX reservoir head for right end

J time counter
K number of time increments to nearest discontinuity
L position counter

The computer program for a terminal orifice is as follows:

SUBROUTINE TOR(H29DH29V2sH11sH22+DH22,Vv22)

C SUBROUTINE TERMINAL ORFICE
COMMON/BOX/A»ByCs GsBF yERROR

C LEFT END RIGHT END

C H2 HRI(LyJ-1) . HL(LsJ=1)

C ve ViLsJ=1) -VILsd-1)

C DH2 DHL (L+1sJ=-K) DHR{L=19J=K)

C va2 ViLsJ) ~ViLsJ)

C H22 HR(LsJ) HL(L»J)

C DH22 DHR(L ) DHL (L J)

C H1l1l HEN HEX

BB = C*B*B/G
CC=-B*B*(H11~H2-2«*DH2+C*V2/G)
IF(CC) 10451094

4 BB = -BB
cC = -CC
10 v22= Vv2
11 ER = (V22#V22+BB*V22+CC)/(2.%V22+BB)

V22= V22-ER

IF (ABS(ER)-ERROR ) 12,12,11
12 DH22=DH2+C/G*(V22-V2)

H22=H2+DH2+DH22

RETURN

END
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Friction Orifice Subroutine

The basic equa;iOns for this routine are equations (18) and (19)., Before this routine
is entered, the followmg terms must have a numerical value:;

BF friction ofifice coefficient

J  time counter

K  number of time increments to nearest discontinuity

L position counter |
The computer routine is the following:

SUBRDUTINE FOR(H1sDH1 sDH2sH2sV1sH119DH22sDH119H224V11)

C SUBROUTINE FRICTION ORFICE
C H1 HL(LsJ-1)

C DH1 DHR (L=1+J=K)
C DH2 DHL (L+1 ¢+ J=K)
C H2 HR(LsJ=-1])

C vl Vi(LsJ=-1)

C H11 HL{L »J}

C OH11 DHL (L »J}

C DH22 DHR (L »J)

C H22 HR(L s J}

C Vil ViLsJ)

COMMON/BOX3/ Ay Bs C9»GsBFHERROR

BB = 2.*BF®#BF*C/G

CC==(H142 #DH1 42 o #C/GRV1=(H242 ¢ *DH2) ) #BF #BF
IF(CCY 39342

2 BB = -BB
cC = =CC
3 V1l = vl

4 ER = (V11#*VI11+BB*V11+CC)/(BB+2.%V11)
Vil = V11-ER
IF (ABS(ER)~ERROR ) 595s4
5 DH11 = DH1+C/G#{V1-V11)
H11 = H1+DH14DH11
DH22 = DH2+4C/G*(V11-V1)
H22 = H2+DH2+DH22
RETURN
END

Diameter Discontinuity Subroutine

Equations (20) to (29) are employed in the diameter discontinuity subroutine. These
equations are derived for flow in the positive direction (to the right) for both an expan-
sion and a contraction. Before the subroutine is entered, the direction of flow after
wave action is determined, and this direction in turn determines which subscripted var-
iables are inserted into the calling vector. ’

The subroutine also includes the case where no viscous loss is considered across
the discontinuity. To utilize this case, it is necessary to assign the term LOSS a value
of zero, Additional terms that must be defined are the following:
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J time counter

K number of time increments to nearest discontinuity
L position counter

The computer routine is as follows:

SUBRAOUTINE DISCIML VLo OHL oM oVR DR CLoCRIALIARVHIL D11 (MR DNER,
1vll.va2y

C DISCONTINUITY
COMMON/BOX/A$BsCs G9BF9ERROR

COMMON/BOX2/ LOSS

SUBROUTINE

C FLOW TO RIGHT FLOW TO LEFT

d CCC GREATER THAN 0 CCC LESS THAN 0

C H1 HL(AsJ=1) HR(L sJ=1)

¢ vl VLILsJ=1) -VR{LsJ=-1)

£ DH1 DHR(L=1sJ=K) DHLIL+1sJ-K)

§ H2 HR(L yJ=1) HL(LyJ=1)

d V2 VR(LsJ-1) VL(LsJ=1)

o DH2 DHL(L+19J=K) DHR(L=1sJ=K)

C H11 HL(LsJ) HR(L 9J)

C 28 VLILsJ) ~VR{L»J)

d DH11 DHL(L s J)) DHR(L »J)

C H22 HRI(LsJ) ‘ HL (L »J)

C v22 VR(LsJ) =VL(L +J)

C DH22 DHR(L s J) : DHL (L sJ)

C c1 cL(L) CRIL)

C c2 CR(L) cLiL)y

C Al AL(L) AR(L)

d A2 AR(L) AL(L)
R=A1/A2

CC= =(H1+2,#DH14+C1%V1/G-H2~2+ #DH2+C2#V2/G)
BB = C1/G+C2#R/G

IF (LOSS) 49354

AA = (R#R=1¢1/(24%G)

GO TO 10

IF{R=1¢) 13192

AA = (R#*R=-R}/G

GO TO 10

AA = (3,%R¥R=2,#R-141/(4¢%G)

Vil= vl

ER = (AA*V11#V11+BB#*V114CC)/(2.*AA*V11+B8)
V1l=V11-ER

IF (ABS(ER)~ERROR) 69655

DH11 = DH1+C1/G*(V1-V11)

V22=R*V11

DH22=DH2+C2/G* (V22-V2)

H11=H1+DH1+DH11

H22=H2+DH2+DH22

RETURN

END
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APPENDIX B

DIGITAL MODEL OF HYDRAULIC LINE WITH OSCILLATING INPUT ORIFICE

A schematic drawing of the system chosen for this example is shown in figure 11
(p. 20).

The system consists of a variable-area orifice at A that perturbs the system and a
fixed orifice at B. The conduit is bounded by pressure reservoirs. (The reservoir
pressures can vary.)

To keep the solution general, N - 2 friction orifices are inserted, which result in
N discontinuities. A time interval is so chosen that each discontinuity is one time in-

* terval from adjacent discontinuities. Thus

At = E (_.._1_

C\N-1

This time increment is a multiple of the working time increment At, which is
chosen small enough so that all disturbing functions can be accurately described by step
functions.

| Initial values for velocity through each discontinuity and the pressure to the right
and left of each discontinuity must be inserted into the computer as data or the computa-
tion of these quantities from the initial steady condition must be integrated into the com-
puter program.

The disturbing function can either be read into the computer as a function of time or
it can be computed. For this case a sinusoidal orifice coefficient for the inlet (at A) is
taken to be

B = BO + BA SIN(27 FJAt)

The orifice coefficient for the outlet is considered to be constant and is denoted

by BN.
The following data are needed as input to the computer:
Cc wave velocity in conduit, ft/sec
L length of line, it

BO mean orifice coefficient when subjected to sinusoidal perturbations
BO1 steady-state inlet orifice coefficient

BA amplitude of inlet orifice coefficient perturbation

F frequency of pressure perturbation
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BN outlet orifice coefficient

VO  steady line velocity, ft/sec

HEN pressure head of inlet reservoir, ft

HEX pressure head of outlet reservoir, ft /

g acceleration due to gravity, ft/ sec

N number of discontinuities .

NN number of working time increments for wave to travel length of conduit

K number of working time increments between discontinuities

M total number of time increments for which computations will be made

N2 number of friction orifices for which pressure and velocity data will be

printed

In setting up the computer program the notation j = x,y,z is used. The notation
means that computations are carried out for j starting at j = x. The computations are
repeated for values of j that are increased by y until j > z. "

The following output parameters are printed out by the computer:

v(1,J), HR(1,J)

V(N, J), HI(N,J)

V(N2, J), HR(N2, J), HL(N2,J)

For a specific example, the fluid system constants appearing in the computer pro-
gram were chosen nominally to match experimental conditions in the Lewis line-
dynamics facility shown schematically in figure 11(b) (p. 20). Two sets of line condi-

/ tions were used. The first (case I)
TABLE 0. - CONSTANTS FOR EXAMPLE was chosen in conjunction with an
analytical study of the effect of the

Case 1 Case II
size of the input amplitude on the

i’ ::‘/sec ”gg 38:: linearity of the perturbation imposed

| o1 = BO 0.8 0. 65 on.the mean flow and pressure in the
BA 0. 48, 0. 32, 0. 20, 0. 15 (0. 08, 0, 22, 0, 38, 0. 50 line. The second (case II) was chosen
BN 1.0 0.42 to match conditions frequently obtained
VO, ft/sec 14 8.5 in the line. |
HEN, ft 520 360 The constants listed in table II
HEX 2 0 01" were employed. A simplified
g, f/sec 32.2 32.2 computer flow diagram for this
N 17 . 1 example is presented in figure 21.
K 1 2 A complete listing of the Fortran
M 170 400 IV program for this example is

" INN 16 32 available™”.
F, cps 40 70
N2 5 5
ERROR 0. 00001 0. 00001
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APPENDIX C

DIGITAL MODEL FOR TAPERED HYDRAULIC LINE

The aystem chosen for the tapered hydraulic line is shown in figure 17 (p. 26). This
system consists of a variable-area orifice at A and a fixed orifice at B connected by a
tapered line with a linear diameter variation between A and B. The line is bounded by
pressure reservoirs. The tapered line was approximated by a line composed ‘of a dis-
crete number of constant-diameter sections of decreasing (or increasing) diameter.

To keep the solution general, N - 2 diameter discontinuities are inserted, which
‘result in N discontinuities and N - 1 sections of straight conduit.

";‘ The conduit is 80 divided that the wave travel times between adjacent discontinuities
are multiples of the working time interval, and the diameter of the approximating
straight section of conduit is equal to the average diameter of the section that it is
approximating.

It is assumed that the wave velocity remains constant over the entire conduit, which
. is equivalent to assuming that the ratio of the conduit diameter to wall thickness remains
constant (a reasonable assumption from a structural viewpoint). . The conduit is thus
approximated by N - 1 sections of equal length. The diameter of the approximating

straight section is given by
DB - DAV(2] - 1
D(I) =DA + 9 N-1

Initial values for velocity and pressure to the right and left of each discontinuity
must be inserted into the computer, or the equations for the computation of these quan-
tities from initial steady conditions must be integrated into the computer program.

The disturbing function can either be read into the computer as a function of time
or it can be computed. For this model a sinusoidal orifice coefficient for the inlet (at A)
is taken to be :

B = BO + BA SIN(2rFJAt)

The orifice coefficient for the outlet is constant and denoted by BN.
The following data are needed as input to the computer:

DA diameter at A, ft -
DB diameter at B, ft

CA wave velocity in conduit, ft/sec
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length of line, ft :
steady-state input orifice coefficient
mean oriﬁce coefficient when subjected to sinusoidal perturbations ' —
amplitu e of orifice coefficient perturbation
frequency of pressure perturbation
output osifice coefficient
pressure of input reservoir, ft
steady-state flow rate, ft

_acceleration due to gravity, ft/sec
number of discontinuities
number of working time increments for wave to travel length of conduit
number of working time increments between discontinuities
total number of time increments for which computations will be made
number of diameter discontinuity for which pressure and velocity data will

| be printed
The following output parameters are printed out by the computer:

VR(1,J), HR(1,J)
VL(N, J), HI{N,J)

VL(N2, J), HI{N2,J)

HR(N2, J)

For a specific example the effect of line taper on the response of a particular sys- |
tem of the type shown in figure 17 (p. 26) was computed. Calculations were made for
nine different degrees of line taper. The specific data used in this analysis were as
follows: '

TABLE II. - END DIAMETERS AND

CONDITIONS FOR TAPER STUDIES

DA | DB | BO BA BN
1 1 1 0.1 0.2
.9 | 1.1 1,235 .1235 . 165
.8 11.2 1,562 . 1562 .139
T | 1.3 [2,041 . 2041 . 1185
.6 11.412.78 .278 .102
.5 115 4.0 .4 . 089
1.1 .91 .825 . 0825 . 247
1.2 .81 .695 . 0695 <313
1.3 LT 1 .503 .0593 .408

'CA = 3000 ft/sec

L =50 ft
HEN = 660 ft
QO = 6.4 cu ft/sec
N=11
NN =10
M = 300
Table III gives the end diameters and conditions
for the various tapers studied.
These cases were studied for frequencies of

5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, and 25 cps.

Figure 22 gives a simplified computer
flow diagram for this example. A listing
of the Fortran IV program for this example
is available

37



w]]

APPENDIX D

mean diameter of tapered line,
ft
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SYMBOLS
lne area, oq t B,
line area of 1, sq ft
line area of j, sq ft Ef
orifice area, sq ft f
line area to left of diameter dis- /
continuity, sq ft g
line area to right of diameter
discontinuity, sq ft -—. _H
polynomial coefficients HEN
orifice coefficient, (ft/secz)l/ 2
friction orifice coefficient, HEX
(ft/secz)l/ 2
orifice coefficient before wave Hy
action, (ft/secz)l/ 2 ‘
orifice coefficient after wave Hy
action, (ft/secz)l/ 2 :
sonic velocity in line, ft/sec Hyy
orifice discharge coefficient
H
wave velocity in line i, ft/sec 22
wave velocity in line j, ft/sec AH
" wave velocity to left of discon-
tinuity, ft/sec AH,
wave. velocity to right of discon-
tinuity, ft/sec -
line diameter, ft AHg

elastic modulua of conveyer,
1b/sq ft

elastic modulus of fluid, 1b/sq ft
Darcy friction factor ‘
function '

acceleration due to gravity,
ft/ sec?

pressure head, ft

pressure head of inlet reservoir,

pressure head of outlet reser-
voir, ft

pressure head to left of discon-
tinuity before wave action, ft

pressure head to right of discon-
tinuity before wave action, ft

pressure head to left of discon-
tinuity after wave action, ft

pressure head to right of discon-
tinuity after wave action, ft

‘pressure head change across
wave or orifice, ft

wave impinging from left of dis-
continuity before wave action,
ft

wave impinging from right of
discontinuity before wave
action, ft



- R(i)

i)

wave leaving discontinuity on
left side after wave action, ft

wave leaving discontinuity on
right side after wave action,
ft .

. pressure head loss over small

line length, ft
time subacr’j:t

i
number of working time incre-
ments between discontinuities

line length, ft

pressure in line, lb/sq ft
pressure wave, 1b/sq ft
volume flow rate, cu ft/sec

area ratio at diameter discon-
tinuity

reflection coefficient in line i

" transmission coefficient in l_ine i

time, sec

_incremental time interval, sec

 short time before wave action,

sec

- short time after wave action, sec
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VE,

VE,

vo

velocity in line, ft/sec
average ve}’ocity of moving end

. before wave action, ft/sec

average velocity of moving end
after wave action, ft/seo

velocity in line adjacent to mov-

ing orifice, relative to orifice,
ft/sec

velocity in line to left of discon-
tinuity before wave action,
ft/sec

velocity in line to right of discon-
tinuity before wave action,
ft/sec

velocity in line to left of discon-
tinuity after wave action,
ft/sec

velocity in line to right of discon-

tinuity after wave action,
ft/sec

position, ft _
line taper factor (egqs. (31)), ft

mass density of fluid, slugs/ft>
wall thickness of conduit, ft




1,

2,

<3,

o 50'

g‘
7.
8.

9.
- 10.
11.
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Figure 21. - Computer flow diagram for hydraulic line with oscillating input orifice.
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Figure 22. - Computer flow diagram for tapered hydraulic line with oscillating input orifice.
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